Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 4-Chloro-N'-(2-methoxybenzylidene)benzohydrazide

#### Hong-Yuan Wu

College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China Correspondence e-mail: hongyuan\_wu@126.com

Received 11 March 2009; accepted 19 March 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.054; wR factor = 0.153; data-to-parameter ratio = 16.9.

The title compound, C<sub>15</sub>H<sub>13</sub>ClN<sub>2</sub>O<sub>2</sub>, was prepared by the reaction of 3-methoxybenzaldehyde and 4-chlorobenzohydrazide in methanol. The asymmetric unit consists of two unique molecules, which are linked together in the form of a cross by  $N-H\cdots O$  and  $N-H\cdots N$  hydrogen bonds. The dihedral angles between the two benzene rings in the molecules are 77.3 (1) and 44.1 (1) $^{\circ}$ . In the crystal structure, molecules are linked through intermolecular N-H···O hydrogen bonds, forming chains along the *a* axis.

#### **Related literature**

For the crystal structures of hydrazone derivatives, see: Singh et al. (2007); Fun et al. (2008); Khaledi et al. (2008); Alhadi et al. (2008). For bond-length data, see: Allen et al. (1987).



### **Experimental**

## Crystal data

| C15H12CIN2O2               | c = 14.599 (2) Å                 |
|----------------------------|----------------------------------|
| $M_r = 288.72$             | $\alpha = 93.298 \ (2)^{\circ}$  |
| Triclinic, $P\overline{1}$ | $\beta = 100.945 (3)^{\circ}$    |
| a = 7.802 (2) Å            | $\gamma = 106.055 \ (2)^{\circ}$ |
| b = 13.395 (3) Å           | V = 1429.7 (5) Å <sup>3</sup>    |
|                            |                                  |

Z = 4Mo  $K\alpha$  radiation  $\mu = 0.27 \text{ mm}^{-1}$ 

#### Data collection

| Bruker APEXII CCD area-detector      | 8597 measured reflections              |
|--------------------------------------|----------------------------------------|
| diffractometer                       | 6134 independent reflections           |
| Absorption correction: multi-scan    | 3465 reflections with $I > 2\sigma(I)$ |
| (SADABS; Sheldrick, 2004)            | $R_{\rm int} = 0.018$                  |
| $T_{\min} = 0.963, T_{\max} = 0.967$ |                                        |
|                                      |                                        |

T = 298 K

 $0.13 \times 0.13 \times 0.12 \text{ mm}$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.054$ 363 parameters  $wR(F^2) = 0.153$ H-atom parameters constrained S = 1.03 $\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.37$  e Å<sup>-3</sup> 6134 reflections

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$    | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------------|------|-------------------------|--------------|--------------------------------------|
| N1-H1···O3 <sup>i</sup>        | 0.86 | 2.01                    | 2.840 (3)    | 162                                  |
| N3−H3···O1                     | 0.86 | 2.14                    | 2.897 (3)    | 147                                  |
| $N3 - H3 \cdot \cdot \cdot N2$ | 0.86 | 2.57                    | 3.292 (3)    | 142                                  |
| 113-113-112                    | 0.00 | 2.57                    | 5.272 (5)    | 142                                  |

Symmetry code: (i) x - 1, y, z.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Financial support from Qiqihar University is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2433).

#### References

- Alhadi, A. A., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, 01584.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, 01707.
- Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Singh, N. K., Singh, M., Srivastava, A. K., Shrivastav, A. & Sharma, R. K. (2007). Acta Cryst. E63, 04895.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2009). E65, 0852 [doi:10.1107/S1600536809010186]

## 4-Chloro-N'-(2-methoxybenzylidene)benzohydrazide

### H.-Y. Wu

#### Comment

Recently, the crystal structures of hydrazone derivatives have been widely reported (Singh *et al.*, 2007; Fun *et al.*, 2008; Khaledi *et al.*, 2008; Alhadi *et al.*, 2008). As an ongoing study of such compounds, the title new compound was reported here.

The asymmetric unit of the title compound consists of two crossed molecules, which are linked together by intramolecular N–H···O and N–H···N hydrogen bonds (Fig. 1 and Table 1). The dihedral angles between the two benzene rings in the molecules are 77.3 (1) and 44.1 (1)°, respectively. All the bond lengths are within normal ranges (Allen *et al.*, 1987).

In the crystal structure, molecules are linked through intermolecular N–H $\cdots$ O hydrogen bonds (Table 1), forming chains along the *a* axis (Fig. 2).

#### Experimental

2-Methoxybenzaldehyde (1.0 mmol) and 4-chlorobenzohydrazide (1.0 mmol) were dissolved in a methanol solution. The mixture was stirred at room temperature for 10 min to give a clear colorless solution. The solution was left to slow evaporate for a few days, yielding colorless needle-shaped crystals.

#### Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and N—H = 0.86 Å with Uiso(H) = xUeq(C or N) with x=1.2 or 1.5 for methyl group.

#### **Figures**



Fig. 1. Molecular structure of the title compound with the atom-labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. H bonds are shown as dashed lines.



Fig. 2. Partial packing view showing the chain formed by N-H $\cdots$ O hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) x-1, y, z]

### 4-Chloro-N'-(2-methoxybenzylidene)benzohydrazide

| Crystal data                                                    |                                                 |
|-----------------------------------------------------------------|-------------------------------------------------|
| C <sub>15</sub> H <sub>13</sub> ClN <sub>2</sub> O <sub>2</sub> | Z = 4                                           |
| $M_r = 288.72$                                                  | $F_{000} = 600$                                 |
| Triclinic, <i>P</i> T                                           | $D_{\rm x} = 1.341 {\rm ~Mg~m}^{-3}$            |
| Hall symbol: -P 1                                               | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| a = 7.802 (2) Å                                                 | Cell parameters from 1723 reflections           |
| b = 13.395 (3)  Å                                               | $\theta = 2.5 - 24.5^{\circ}$                   |
| c = 14.599 (2) Å                                                | $\mu = 0.27 \text{ mm}^{-1}$                    |
| $\alpha = 93.298 \ (2)^{\circ}$                                 | T = 298  K                                      |
| $\beta = 100.945 \ (3)^{\circ}$                                 | Cut from needle, colorless                      |
| $\gamma = 106.055 \ (2)^{\circ}$                                | $0.13 \times 0.13 \times 0.12 \text{ mm}$       |
| $V = 1429.7 (5) \text{ Å}^3$                                    |                                                 |

#### Data collection

| Bruker APEXII CCD area-detector diffractometer                 | 6134 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 3465 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.018$                  |
| T = 298  K                                                     | $\theta_{\text{max}} = 27.0^{\circ}$   |
| ω scans                                                        | $\theta_{\min} = 1.4^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 2004) | $h = -9 \rightarrow 9$                 |
| $T_{\min} = 0.963, T_{\max} = 0.967$                           | $k = -16 \rightarrow 17$               |
| 8597 measured reflections                                      | $l = -18 \rightarrow 14$               |

#### Refinement

| Refinement on $F^2$                             |
|-------------------------------------------------|
| Least-squares matrix: full                      |
| $R[F^2 > 2\sigma(F^2)] = 0.054$                 |
| $wR(F^2) = 0.153$                               |
| <i>S</i> = 1.03                                 |
| 6134 reflections                                |
| 363 parameters                                  |
| Primary atom site location: structur<br>methods |

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0595P)^2 + 0.2838P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.27$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.37$  e Å<sup>-3</sup>

re-invariant direct Extinction correction: none

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$  $\boldsymbol{Z}$ х y C11 0.1543 (6) -0.36428(18)0.35966 (9) 0.40462 (10) Cl2 0.01821 (14) 0.31778 (8) 0.07426 (8) 0.1277 (4) N1 0.75724 (14) 0.0483 (5) 0.1823 (3) 0.25213 (13) H10.0681 0.7446 0.2274 0.058\* N2 0.3077 (3) 0.84442 (15) 0.23333 (14) 0.0507 (5) N3 0.6661(2)0.76354 (14) 0.22293 (14) 0.0500(5)H3 0.5645 0.7571 0.2402 0.060\* N4 0.8123 (2) 0.85210 (14) 0.25581 (13) 0.0475 (5) 01 0.3995(2)0.69948 (13) 0.33805 (12) 0.0609(5)O2 0.1670 (4) 0.9429 (2) -0.00901(17)0.0918 (7) O3 0.8240(2) 0.69020 (14) 0.13798 (12) 0.0633 (5) 04 0.7265(3)1.05068 (14) 0.44551 (13) 0.0713 (5) C1 -0.1898(5)0.4568 (3) 0.3777 (2) 0.0879 (10) C2 -0.0336(6)0.4345 (2) 0.3656 (3) 0.0975 (11) H2 -0.02260.3678 0.3719 0.117\* C3 0.1072 (4) 0.5114 (2) 0.3440(2) 0.0776 (8) H3A 0.093\* 0.2144 0.4971 0.3372 C4 0.0877 (3) 0.60967 (18) 0.33272 (17) 0.0528 (6) C5 -0.0703(3)0.6296(2) 0.34588 (17) 0.0581 (6) Н5 0.070\* -0.08350.6958 0.3389 C6 -0.2094(4)0.5536(2) 0.3691 (2) 0.0732 (8) H6 -0.31470.5683 0.3787 0.088\* C7 0.2386 (3) 0.69232 (18) 0.30901 (17) 0.0493 (6) C8 0.2455 (3) 0.88706 (18) 0.16387 (18) 0.0525 (6) H8 0.1296 0.8545 0.1273 0.063\* C9 0.9858 (2) 0.1410(2) 0.3533 (4) 0.0621 (7) C10 0.3066 (5) 1.0144 (3) 0.0507 (3) 0.0809(10) C11 0.4045 (7) 1.1090 (3) 0.0286 (4) 0.1179 (17) H11 0.3749 1.1280 -0.03130.141\* C12 0.5443(7)1.1749 (3) 0.0941(5)0.136(2)H12 0.6091 1.2385 0.0783 0.164\* C13 0.5913 (5) 1.1490 (3) 0.1832 (4) 0.1147 (16) H13 0.6873 1.1945 0.2272 0.138\*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| C14  | 0.4943 (4) | 1.0544 (2)   | 0.2068 (3)   | 0.0788 (9)  |
|------|------------|--------------|--------------|-------------|
| H14  | 0.5240     | 1.0368       | 0.2673       | 0.095*      |
| C15  | 0.1087 (6) | 0.9678 (4)   | -0.1012 (3)  | 0.1261 (17) |
| H15A | 0.0833     | 1.0339       | -0.0971      | 0.189*      |
| H15B | 0.0002     | 0.9144       | -0.1330      | 0.189*      |
| H15C | 0.2033     | 0.9720       | -0.1356      | 0.189*      |
| C16  | 0.2096 (4) | 0.4261 (2)   | 0.0957 (2)   | 0.0792 (9)  |
| C17  | 0.1896 (4) | 0.5239 (2)   | 0.0987 (2)   | 0.0723 (8)  |
| H17  | 0.0737     | 0.5328       | 0.0875       | 0.087*      |
| C18  | 0.3427 (3) | 0.6096 (2)   | 0.11840 (17) | 0.0590 (7)  |
| H18  | 0.3294     | 0.6765       | 0.1203       | 0.071*      |
| C19  | 0.5153 (3) | 0.59732 (19) | 0.13536 (17) | 0.0528 (6)  |
| C20  | 0.5314 (4) | 0.4971 (2)   | 0.1296 (2)   | 0.0737 (8)  |
| H20  | 0.6466     | 0.4872       | 0.1391       | 0.088*      |
| C21  | 0.3781 (5) | 0.4117 (2)   | 0.1100 (2)   | 0.0872 (10) |
| H21  | 0.3898     | 0.3444       | 0.1066       | 0.105*      |
| C22  | 0.6829 (3) | 0.68759 (19) | 0.16411 (17) | 0.0507 (6)  |
| C23  | 0.7862 (3) | 0.91383 (17) | 0.31774 (16) | 0.0469 (5)  |
| H23  | 0.6764     | 0.8963       | 0.3378       | 0.056*      |
| C24  | 0.9252 (3) | 1.01116 (17) | 0.35755 (16) | 0.0459 (5)  |
| C25  | 0.8937 (3) | 1.08002 (18) | 0.42280 (17) | 0.0522 (6)  |
| C26  | 1.0264 (4) | 1.1724 (2)   | 0.4600 (2)   | 0.0720 (8)  |
| H26  | 1.0043     | 1.2182       | 0.5036       | 0.086*      |
| C27  | 1.1899 (4) | 1.1971 (2)   | 0.4332 (2)   | 0.0871 (10) |
| H27  | 1.2791     | 1.2593       | 0.4592       | 0.105*      |
| C28  | 1.2236 (4) | 1.1312 (2)   | 0.3686 (2)   | 0.0836 (9)  |
| H28  | 1.3348     | 1.1485       | 0.3501       | 0.100*      |
| C29  | 1.0921 (3) | 1.0396 (2)   | 0.33148 (19) | 0.0620(7)   |
| H29  | 1.1154     | 0.9951       | 0.2873       | 0.074*      |
| C30  | 0.6940 (5) | 1.1163 (2)   | 0.5169 (2)   | 0.0871 (10) |
| H30A | 0.7792     | 1.1197       | 0.5747       | 0.131*      |
| H30B | 0.5717     | 1.0880       | 0.5256       | 0.131*      |
| H30C | 0.7093     | 1.1853       | 0.4983       | 0.131*      |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | U <sup>33</sup> | $U^{12}$     | $U^{13}$    | $U^{23}$    |
|-----|-------------|-------------|-----------------|--------------|-------------|-------------|
| C11 | 0.1353 (10) | 0.1066 (8)  | 0.1913 (13)     | -0.0377 (7)  | 0.0607 (9)  | 0.0557 (8)  |
| Cl2 | 0.0964 (7)  | 0.0919 (7)  | 0.1465 (9)      | -0.0403 (5)  | 0.0170 (7)  | -0.0068 (6) |
| N1  | 0.0392 (10) | 0.0469 (11) | 0.0584 (12)     | 0.0070 (8)   | 0.0157 (9)  | 0.0148 (9)  |
| N2  | 0.0449 (11) | 0.0445 (11) | 0.0650 (13)     | 0.0100 (9)   | 0.0201 (10) | 0.0137 (10) |
| N3  | 0.0369 (10) | 0.0447 (11) | 0.0629 (12)     | 0.0044 (8)   | 0.0123 (9)  | -0.0067 (9) |
| N4  | 0.0416 (10) | 0.0417 (10) | 0.0531 (12)     | 0.0038 (8)   | 0.0099 (9)  | -0.0017 (9) |
| 01  | 0.0496 (11) | 0.0653 (11) | 0.0683 (11)     | 0.0146 (9)   | 0.0135 (9)  | 0.0200 (9)  |
| O2  | 0.1113 (19) | 0.1159 (19) | 0.0810 (15)     | 0.0610 (17)  | 0.0465 (14) | 0.0513 (14) |
| O3  | 0.0462 (10) | 0.0679 (11) | 0.0683 (11)     | 0.0056 (8)   | 0.0174 (9)  | -0.0139 (9) |
| O4  | 0.0701 (12) | 0.0601 (11) | 0.0799 (13)     | 0.0030 (9)   | 0.0377 (10) | -0.0136 (9) |
| C1  | 0.084 (2)   | 0.069 (2)   | 0.089 (2)       | -0.0181 (17) | 0.0222 (19) | 0.0211 (17) |

| C2            | 0.120 (3)        | 0.0505 (18)             | 0.116 (3)   | 0.0063 (19)  | 0.031 (2)   | 0.0317 (18)  |
|---------------|------------------|-------------------------|-------------|--------------|-------------|--------------|
| C3            | 0.085 (2)        | 0.0574 (18)             | 0.093 (2)   | 0.0173 (16)  | 0.0265 (18) | 0.0241 (16)  |
| C4            | 0.0568 (15)      | 0.0484 (14)             | 0.0494 (14) | 0.0067 (11)  | 0.0136 (12) | 0.0114 (11)  |
| C5            | 0.0577 (16)      | 0.0557 (15)             | 0.0558 (15) | 0.0034 (12)  | 0.0184 (13) | 0.0099 (12)  |
| C6            | 0.0646 (18)      | 0.074 (2)               | 0.0690 (18) | -0.0059 (15) | 0.0227 (15) | 0.0112 (15)  |
| C7            | 0.0482 (14)      | 0.0482 (14)             | 0.0504 (14) | 0.0092 (11)  | 0.0149 (11) | 0.0060 (11)  |
| C8            | 0.0474 (14)      | 0.0504 (14)             | 0.0656 (16) | 0.0153 (11)  | 0.0237 (12) | 0.0118 (12)  |
| C9            | 0.0584 (16)      | 0.0539 (15)             | 0.095 (2)   | 0.0273 (13)  | 0.0452 (16) | 0.0300 (15)  |
| C10           | 0.090 (2)        | 0.074 (2)               | 0.121 (3)   | 0.0507 (19)  | 0.073 (2)   | 0.050 (2)    |
| C11           | 0.133 (4)        | 0.096 (3)               | 0.192 (5)   | 0.070 (3)    | 0.119 (4)   | 0.090 (3)    |
| C12           | 0.130 (4)        | 0.064 (3)               | 0.271 (7)   | 0.046 (3)    | 0.136 (5)   | 0.077 (4)    |
| C13           | 0.086 (3)        | 0.054 (2)               | 0.220 (5)   | 0.0158 (18)  | 0.077 (3)   | 0.019 (3)    |
| C14           | 0.0608 (18)      | 0.0509 (16)             | 0.134 (3)   | 0.0156 (14)  | 0.0435 (19) | 0.0099 (17)  |
| C15           | 0.156 (4)        | 0.202 (5)               | 0.092 (3)   | 0.127 (4)    | 0.068 (3)   | 0.083 (3)    |
| C16           | 0.0652 (19)      | 0.065 (2)               | 0.082 (2)   | -0.0149 (15) | 0.0114 (16) | -0.0119 (15) |
| C17           | 0.0485 (16)      | 0.080 (2)               | 0.0712 (18) | 0.0001 (14)  | 0.0050 (13) | -0.0130 (15) |
| C18           | 0.0504 (15)      | 0.0569 (15)             | 0.0592 (16) | 0.0073 (12)  | 0.0039 (12) | -0.0108 (12) |
| C19           | 0.0448 (14)      | 0.0523 (14)             | 0.0529 (14) | 0.0057 (11)  | 0.0074 (11) | -0.0083 (11) |
| C20           | 0.0582 (17)      | 0.0572 (17)             | 0.096 (2)   | 0.0125 (14)  | 0.0054 (16) | -0.0127 (15) |
| C21           | 0.085 (2)        | 0.0491 (17)             | 0.111 (3)   | 0.0045 (16)  | 0.010 (2)   | -0.0108 (16) |
| C22           | 0.0442 (14)      | 0.0513 (14)             | 0.0520 (14) | 0.0100 (11)  | 0.0075 (11) | -0.0027 (11) |
| C23           | 0.0418 (13)      | 0.0452 (13)             | 0.0508 (14) | 0.0087 (10)  | 0.0099 (11) | 0.0019 (11)  |
| C24           | 0.0462 (13)      | 0.0399 (12)             | 0.0468 (13) | 0.0064 (10)  | 0.0086 (10) | 0.0009 (10)  |
| C25           | 0.0543 (15)      | 0.0483 (14)             | 0.0512 (14) | 0.0078 (11)  | 0.0158 (12) | 0.0028 (11)  |
| C26           | 0.078 (2)        | 0.0516 (16)             | 0.0759 (19) | 0.0005 (14)  | 0.0237 (16) | -0.0122 (14) |
| C27           | 0.068 (2)        | 0.0605 (18)             | 0.108 (3)   | -0.0174 (15) | 0.0229 (18) | -0.0240 (17) |
| C28           | 0.0556 (17)      | 0.073 (2)               | 0.107 (2)   | -0.0082 (14) | 0.0319 (17) | -0.0170 (18) |
| C29           | 0.0504 (15)      | 0.0571 (16)             | 0.0721 (17) | 0.0047 (12)  | 0.0194 (13) | -0.0091 (13) |
| C30           | 0.101 (2)        | 0.072 (2)               | 0.095 (2)   | 0.0188 (18)  | 0.055 (2)   | -0.0112 (17) |
| Geometric pa  | arameters (Å, °) |                         |             |              |             |              |
| C11           |                  | 1 727 (3)               | C12-        |              | 1.3         | 74 (7)       |
| $Cl_2 - Cl_6$ |                  | 1.727(3)<br>1.733(3)    | C12         | -H12         | 0.93        | 300          |
| N1-C7         |                  | 1.755(3)                | C12         |              | 1.35        | 34 (5)       |
| N1—N2         |                  | 1 379 (2)               | C13-        | _H13         | 0.93        | 800          |
| N1—H1         |                  | 0.8600                  | C14-        | _H14         | 0.93        | 800          |
| N2-C8         |                  | 1 274 (3)               | C15-        | H15A         | 0.90        | 500          |
| N3—C22        |                  | 1.271(3)<br>1 344 (3)   | C15-        | _H15R        | 0.90        | 500          |
| N3—N4         |                  | 1.3 + (3)<br>1.384 (2)  | C15-        | _H15C        | 0.90        | 500          |
| N3—H3         |                  | 0.8600                  | C16-        | -C21         | 1.30        | 50 (4)       |
| N4—C23        |                  | 1 273 (3)               | C16-        | -C17         | 1.30        | 51(4)        |
| 01-07         |                  | 1.273(3)                | C17-        | -C18         | 1.30        | 79 (4)       |
| 02-C10        |                  | 1.222(3)<br>1.353(4)    | C17_        | _H17         | 0.93        | 300          |
| 02 - C15      |                  | 1 426 (4)               | C18_        |              | 1.3         | 79 (3)       |
| $03-C^{22}$   |                  | 1.120(4)<br>1.224(3)    | C18_        | _H18         | 0.93        | 5 (5)<br>800 |
| $04-C^{25}$   |                  | 1.22 + (3)<br>1 364 (3) | C19_        | -C20         | 1 35        | 32 (4)       |
| 51 025        |                  | 1.501 (5)               | 01)-        |              | 1.50        | -(')         |

C19—C22

C20-C21

1.429 (3)

1.356 (5)

O4—C30

C1—C6

1.485 (3)

1.377 (4)

| a. a <b>.</b>                                           | 1 2 2 2 (5)          | CO                                  |                      |
|---------------------------------------------------------|----------------------|-------------------------------------|----------------------|
| C1—C2                                                   | 1.372 (5)            | C20—H20                             | 0.9300               |
| С2—С3                                                   | 1.382 (4)            | C21—H21                             | 0.9300               |
| С2—Н2                                                   | 0.9300               | C23—C24                             | 1.451 (3)            |
| C3—C4                                                   | 1.382 (4)            | C23—H23                             | 0.9300               |
| С3—НЗА                                                  | 0.9300               | C24—C29                             | 1.384 (3)            |
| C4—C5                                                   | 1.377 (3)            | C24—C25                             | 1.390 (3)            |
| C4—C7                                                   | 1.486 (3)            | C25—C26                             | 1.378 (3)            |
| C5—C6                                                   | 1.377 (3)            | C26—C27                             | 1.364 (4)            |
| С5—Н5                                                   | 0.9300               | С26—Н26                             | 0.9300               |
| С6—Н6                                                   | 0.9300               | C27—C28                             | 1.365 (4)            |
| C8—C9                                                   | 1.453 (3)            | С27—Н27                             | 0.9300               |
| С8—Н8                                                   | 0.9300               | C28—C29                             | 1.367 (4)            |
| C9—C14                                                  | 1.385 (4)            | C28—H28                             | 0.9300               |
| C9—C10                                                  | 1.402 (4)            | С29—Н29                             | 0.9300               |
| C10-C11                                                 | 1.378 (5)            | С30—Н30А                            | 0.9600               |
| C11—C12                                                 | 1.363 (7)            | С30—Н30В                            | 0.9600               |
| C11—H11                                                 | 0.9300               | С30—Н30С                            | 0.9600               |
| C7—N1—N2                                                | 119.90 (19)          | O2-C15-H15B                         | 109.5                |
| C7—N1—H1                                                | 120.0                | H15A—C15—H15B                       | 109.5                |
| N2—N1—H1                                                | 120.0                | O2-C15-H15C                         | 109.5                |
| C8—N2—N1                                                | 113.9 (2)            | H15A—C15—H15C                       | 109.5                |
| C22—N3—N4                                               | 120.04 (19)          | H15B—C15—H15C                       | 109.5                |
| C22—N3—H3                                               | 120.0                | C21—C16—C17                         | 121.0 (3)            |
| N4—N3—H3                                                | 120.0                | C21—C16—Cl2                         | 119.2 (3)            |
| C23—N4—N3                                               | 114.35 (19)          | C17—C16—Cl2                         | 119.8 (3)            |
| C10—O2—C15                                              | 118.5 (3)            | C16—C17—C18                         | 119.4 (3)            |
| C25—O4—C30                                              | 117.5 (2)            | С16—С17—Н17                         | 120.3                |
| C6—C1—C2                                                | 121.2 (3)            | С18—С17—Н17                         | 120.3                |
| C6—C1—Cl1                                               | 119.6 (3)            | C17—C18—C19                         | 120.8 (3)            |
| C2—C1—Cl1                                               | 119.2 (3)            | C17—C18—H18                         | 119.6                |
| C1—C2—C3                                                | 119.9 (3)            | C19—C18—H18                         | 119.6                |
| С1—С2—Н2                                                | 120.0                | C18—C19—C20                         | 118.5 (2)            |
| С3—С2—Н2                                                | 120.0                | C18—C19—C22                         | 122.2 (2)            |
| C2—C3—C4                                                | 119.6 (3)            | C20—C19—C22                         | 119.2 (2)            |
| С2—С3—Н3А                                               | 120.2                | C21—C20—C19                         | 120.5 (3)            |
| С4—С3—НЗА                                               | 120.2                | C21—C20—H20                         | 119.8                |
| C5—C4—C3                                                | 119.0 (2)            | C19—C20—H20                         | 119.8                |
| C5—C4—C7                                                | 121.3 (2)            | C16—C21—C20                         | 119.8 (3)            |
| $C_3 - C_4 - C_7$                                       | 1197(2)              | C16-C21-H21                         | 120.1                |
| C4-C5-C6                                                | 121.4(3)             | $C_{20}$ $C_{21}$ $H_{21}$          | 120.1                |
| C4—C5—H5                                                | 1193                 | 03-C22-N3                           | 123.7(2)             |
| C6-C5-H5                                                | 119.3                | $03 - C^{22} - C^{19}$              | 123.7(2)<br>122.4(2) |
| $C_{1} - C_{6} - C_{5}$                                 | 118.8 (3)            | $N_{3}$ $C_{22}$ $C_{19}$           | 122.1(2)<br>113.9(2) |
| C1_C6_H6                                                | 120.6                | N4-C23-C24                          | 120.9(2)             |
| C5_C6_H6                                                | 120.0                | N4_C23_H23                          | 119.5                |
| 01 - C7 - N1                                            | 123.1 (2)            | C24_C23_H23                         | 119.5                |
| 01 - C7 - C4                                            | 123.1(2)<br>122.8(2) | $C_{29} - C_{24} - C_{25}$          | 117.6(2)             |
| N1 C7 C4                                                | 122.0(2)             | $C_{2}^{2} = C_{2}^{2} + C_{2}^{2}$ | 121.0(2)             |
| $\frac{1}{1} - \frac{1}{2} - \frac{1}{2} + \frac{1}{2}$ | 114.1(2)             | $C_{2} = C_{2} = C_{2}$             | 121.7(2)<br>120.7(2) |
| N2-C0-C9                                                | 120.9 (2)            | $U_{23} - U_{24} - U_{23}$          | 120.7 (2)            |

| N2—C8—H8    | 119.5     | O4—C25—C26    | 123.6 (2) |
|-------------|-----------|---------------|-----------|
| С9—С8—Н8    | 119.5     | O4—C25—C24    | 116.1 (2) |
| C14—C9—C10  | 119.3 (3) | C26—C25—C24   | 120.3 (2) |
| C14—C9—C8   | 121.9 (3) | C27—C26—C25   | 120.3 (3) |
| C10—C9—C8   | 118.7 (3) | С27—С26—Н26   | 119.8     |
| O2—C10—C11  | 125.2 (4) | С25—С26—Н26   | 119.8     |
| O2—C10—C9   | 115.4 (3) | C26—C27—C28   | 120.5 (3) |
| С11—С10—С9  | 119.4 (4) | С26—С27—Н27   | 119.7     |
| C12-C11-C10 | 120.4 (5) | С28—С27—Н27   | 119.7     |
| C12—C11—H11 | 119.8     | C27—C28—C29   | 119.3 (3) |
| С10—С11—Н11 | 119.8     | C27—C28—H28   | 120.4     |
| C11—C12—C13 | 121.2 (4) | C29—C28—H28   | 120.4     |
| C11—C12—H12 | 119.4     | C28—C29—C24   | 122.0 (2) |
| C13—C12—H12 | 119.4     | С28—С29—Н29   | 119.0     |
| C12—C13—C14 | 119.3 (4) | С24—С29—Н29   | 119.0     |
| С12—С13—Н13 | 120.3     | O4—C30—H30A   | 109.5     |
| C14—C13—H13 | 120.3     | O4—C30—H30B   | 109.5     |
| C13—C14—C9  | 120.4 (4) | H30A—C30—H30B | 109.5     |
| C13—C14—H14 | 119.8     | O4—C30—H30C   | 109.5     |
| C9—C14—H14  | 119.8     | H30A—C30—H30C | 109.5     |
| O2—C15—H15A | 109.5     | H30B—C30—H30C | 109.5     |
|             |           |               |           |

Hydrogen-bond geometry (Å, °)

| D—H···A                                 | <i>D</i> —Н | H···A | $D \cdots A$ | D—H··· $A$ |
|-----------------------------------------|-------------|-------|--------------|------------|
| N1—H1···O3 <sup>i</sup>                 | 0.86        | 2.01  | 2.840 (3)    | 162        |
| N3—H3…O1                                | 0.86        | 2.14  | 2.897 (3)    | 147        |
| N3—H3…N2                                | 0.86        | 2.57  | 3.292 (3)    | 142        |
| Symmetry codes: (i) $x$ -1, $y$ , $z$ . |             |       |              |            |







Fig. 2